Wax-bonding 3D microfluidic chips
نویسندگان
چکیده
منابع مشابه
Wax-bonding 3D microfluidic chips.
We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can real...
متن کاملConstruction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the conta...
متن کاملBonding of glass microfluidic chips at room temperatures.
A simple, room-temperature bonding process was developed for the fabrication of glass microfluidic chips. High-quality bonding with high yields (>95%) was achieved without the requirement of clean room facilities, programmed high-temperature furnaces, pressurized water sources, adhesives, or pressurizing weights. The plates to be bonded were sequentially prewashed with acetone, detergent, high-...
متن کامل3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-b...
متن کاملWhole-Teflon microfluidic chips.
Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lab on a Chip
سال: 2010
ISSN: 1473-0197,1473-0189
DOI: 10.1039/c004744a